
Journal of Sound and Vibration (1997) 199(4), 567–586

APPLICATION OF FRACTIONAL OPERATORS TO
THE ANALYSIS OF DAMPED VIBRATIONS OF

VISCOELASTIC SINGLE-MASS SYSTEMS

Y. A. R  M. V. S

Department of Theoretical Mechanics, Voronezh State Academy of Construction and
Architecture, ul. Kirova 3-75, Voronezh 394018, Russia

(Received 2 November 1995)

Free damped vibrations of two hereditarily elastic oscillators, the hereditary properties
of which are described by the Boltzmann–Volterra relationships with the weakly singular
Rzhanitsyn kernel taken as the creep kernel (the first model) or as the relaxation kernel
(the second model), are considered. These integral relationships are equivalent to the
differential relationships involving infinite sums of various order time derivatives of
excitation (force) or response (displacement) depending on whether the Rzhanitsyn kernel
is used for the creep kernel or relaxation kernel. The problem is solved by the Laplace
transform method. When passing from image to pre-image one is led to find the roots of
an algebraic (characteristic) equation with fractional exponents. A method for solving such
equations is proposed which allows one to investigate the roots’ behaviour in a wide range
of single-mass system parameters. It is shown that, if the Rzhanitsyn kernel is the creep
kernel in the Volterra equations, then the characteristic equation does not possess real
roots, but has two complex conjugate roots; i.e., the test single-mass system subjected to
the impulse excitation does not pass into an aperiodic regime. On the contrary, the
oscillator model with the Rzhanitsyn relaxation kernel may be both in vibrating motion
and in the aperiodic regime, depending on the intervals over which the relaxation times for
the given model vary, as well as on the order of fractional power and the ratio of the relaxed
modulus (rubbery modulus) to the non-relaxed modulus (glassy modulus). However,
contrary to the standard linear solid model with ordinary time derivatives for which the
dimensions of the domain of aperiodicity as well as its existence are governed only by the
magnitude of the ratio of the relaxed modulus to the non-relaxed modulus, for the model
with the Rzhanitsyn relaxation kernel all of the above-listed factors essentially depend in
addition on an order of a fractional operator parameter. The main characteristics of the
vibratory and aperiodic motions of the single-mass system as functions of the relaxation
time or creep time, which are equivalent to the temperature dependences, are constructed
and analyzed for both models.
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1. INTRODUCTION

Free damped vibrations of a hereditarily elastic oscillator, the hereditary properties of
which are described by a rheological model containing fractional operators, were treated
first by Rozovsky and Sinaisky [1]. The authors used for the fractional operators fractional
derivatives to replace the ordinary derivatives in the standard linear solid model. The
solution for such a generalized standard linear solid model has been constructed by the
Laplace transformation method. During the Laplace transform inversion, rationalization
of the characteristic equation with fractional powers has been made through substitution
for a complex parameter of conversion, whereupon the Laplace transform has been
decomposed into common fractions. As the result of inversion, the solution has been
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represented in terms of a linear combination of Rabotnov’s fractional exponential
functions [2] which are dependent upon the time and the roots of the rationalized
characteristic equation. The solution constructed in such a manner is poorly amenable to
analytical treatment, since for its realization tabulation of fractional exponential functions
of a complex variable, which has not yet been carried out, is required; although the
tables for fractional exponential functions of a real variable have long been in existence
[Rabotnov et al., 3].

Another way of looking at the analysis of free damped vibrations of an oscillator
described by the fractional calculus standard linear solid model, which is devoid of the
enumerated limitations, was proposed by Rossikhin [4] and extended by Zelenev et al. [5, 6]
and Meshkov et al. [7]. The Laplace transformation method was also applied in these
papers, but the non-rationalized characteristic equation, i.e., the equation with fractional
powers, was used for calculating the roots. It has been shown that the characteristic
equation with fractional powers has no real roots but possesses two complex conjugate
roots located in the half-plane of the complex plane. Upon determining the roots of the
characteristic equation, for the calculation of which a highly efficient method was
developed by Rossikhin [4], the solution has been constructured on the first sheet of a
Riemann surface (a complex plane with a cut-out negative real semi-axis) with the use of
the theory of residues.

The renewed interest in visoelastic models and their application to dynamic problems
[8–10] centres around the elaboration of new damping systems in engineering and
technology based on a continuum of damping elements distributed uninterruptedly
throughout the relaxation or creep times instead of the discrete system of damping
elements [11]. Among such damping systems are various kinds of coating, backing,
substrate, sheeting and jacketing which are designed for damping of harmful vibrations.

However, despite a growing body of publications, the authors are not familiar with
papers wherein hereditarily elastic models with more intricate fractional operators are
applied for mathematical modelling of damped vibrations, instead of traditional operators
of fractional differentiation and integration.

In the present paper, an attempt is made to eliminate this gap through the use of
hereditarily elastic models with such fractional operators which combine the properties of
the fractional derivative standard linear solid model and the features of the standard linear
solid model with oridinary derivatives.

2. MODELS OF HEREDITARILY ELASTIC MEDIA WITH RZHANITSYN KERNEL

Let the hereditary features of an oscillator be described by the Boltzmann–Volterra
relationships

o(t)= Ja $s(t)+ ns g
t

0

Ks (t− t')s(t') dt'%, ns =
J0 − Ja

Ja
, (1a)

s(t)=Ea $o(t)− no g
t

0

Ko (t− t')o(t') dt'%, no =
Ea −E0

Ea
, (1b)

where the weakly singular Rzhanitsyn kernel is [12]

Ki (t)=
tg−1

tg
i G(g)

exp0− t
ti1, i= o, s. (2)
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Here s is the stress, o is the strain, ts and to are the creep time and relaxation time,
respectively, J0 and Ja are the relaxed and non-relaxed magnitudes of the elastic
compliance, respectively, E0 = J−1

0 and Ea = J−1
a are the relaxed (rubbery) and non-relaxed

(glassy) magnitudes of the elastic modulus, respectively, (to /ts )g =E0/Ea = Ja/J0, G(g) is
the Gamma function, and g is the order of the fractional operator (parameter of
divisibility), 0Q gE 1.

Rzhanitsyn himself used the function (2) for the after-effect kernel Ks (t) to describe the
deformation rates of a steel specimen [12], but the function (2) was applied for the
relaxation kernel Ko (t) by Koltynov [13].

The resolvent kernel Ko (t) arising from the kernel (2) at i= s has been obtained by
Wolfson [14] in the form

Ko (t)= n−1
o exp0− t

ts1tg−1

tg
s

s
a

n=0

(−ns )n(t/ts )gn

G[g(n+1)]
= n−1

o exp(−t/ts )%g (−ns , t/ts ), (3)

where

%g (−ni , t/ti )= tg−1t−g
i s

a

n=0

(−ni )n(t/ti )gn

G[g(n+1)]

is the Rabotnov fractional exponential function [2] which becomes an ordinary exponential
at g=1.

It is known that the relaxation and creep kernels may be written in the integral form
in terms of the distribution functions of the relaxation times Bo (t, to ) and creep times
Bs (t, ts ) by using the formulas [15]

Ki (t)=g
a

0

t−1Bi (t, ti ) e−t/t dt. (4)

Thus, the distribution function of creep times compatible with the kernel (2) at i= s has
the form [16]

Bs (t, ts )=
sin pg

p

tg−1

(ts − t)g H(ts − t), (5)

but the distribution function of relaxation times appropriate to the kernel (3) is written
as [17]

Bo (t, to )=
sin pg

ptno

H(ts − t)
2 cos pg+ nsT−g + n−1

s T g, (6)

where H(ts − t) is the unit Heaviside function, and T= tst
−1 −1.

Plots for the functions Bs (t, ts ) and Bo (t, to ) at different magnitudes of g are presented
in reference [16] for the case ns = no = ts = to =1. Reference to these plots shows that the
distribution functions have weak singularity at t=0.

It may be shown (see the Appendix) that when g:1 the distribution function (6) tends
to the Dirac delta function

lim
g:1

Bo (t, to )=
(nsT)1/2

t
d(T− ns ); (7)
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i.e., it is the delta-like sequence. This fact could be expected since the rheological
model under consideration at g=1 goes over into the ordinary standard linear solid
model, the relaxation and creep time distribution of which are described by the Dirac
d-function.

One can show that the Volterra relationships (1) with the kernels (2) are equivalent to
rheological models with a certain fractional operator combining the properties of ordinary
and fractional derivatives and integrals. Applying the Laplace transformation to equation
(1a), wherein the kernel Ks has the form (2) at i= s, yields

ō= Ja[1+ ns (1+ pts )−g]s̄, (8)

where an overbar denotes the Laplace transform of the corresponding function.
Considering that

(1+ pts )−g =1− gpts +
g(g+1)

2!
( pts )2 −

g(g+1)(g+2)
3!

( pts )3 + · · · (9)

and substituting expansion (9) into the formula (8), after transition from image to
pre-image in the resulting relation, one is led to the expression

o= Ja[1+ ns(1+ ts d/dt)−g]s, (10)

which contains the operator (1+ ts d/dt)−g having, as is shown in later sections, the
features described above.

3. PROBLEM FORMULATION AND METHOD OF SOLUTION

Consider free damped vibrations of a single-mass system subjected to impulse excitation
at the initial instant of time. Due to the hereditary elastic Boltzmann–Volterra
relationships (1), the equation of motion can be written in the two equivalent forms in
terms of the relaxation Ko (t) and the creep kernel Ks (t), respectively:

ẍ+v2
a $x− no g

t

0

Ko (t− t')x(t') dt'%=Fd(t), (11)

ẍ+v2
ax+ ns g

t

0

Ks (t− t')ẍ(t') dt'=F[d(t)+ nsKs (t)]. (12)

Here x is the co-ordinate, F is the amplitude of force impulse per unit mass, va is the
frequency of elastic vibrations corresponding to the non-relaxed magnitude of the elastic
modulus, and overdots denote time derivatives.

Applying the Laplace transformation to equations (11) and (12) yields

x̄( p)=
F

p2 +v2
a[1− noK�o ( p)]

=
F[1+ nsK�s ( p)]

v2
a + p2[1+ nsK�s ( p)]

. (13)

The solution in the space of inverse transforms is determined according to the inversion
formula

x(t)=
1

2pi g
c+ia

c−ia

x̄( p) ept dp. (14)
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Figure 1. The contour used to calculate the complex inversion integral in the Laplace method.

To calculate the integral (14), it is necessary to find all singular points of the
complex function x̄( p). The weakly singular kernels discussed above have branch
points p=−s

*
, s

*
e 0 and p=−a and ordinary poles at the same magnitudes of p

which cause the demoninator in formula (13) to vanish: i.e., they are the roots of the
equations

p2 +v2
a[1− noK�o ( p)]=0, v2

a + p2[1+ nsK�s ( p)]=0. (15a, b)

For multi-valued functions possessing a branch point, the inverse transform theorem is
applicable only for the first sheet of the Riemann surface; i.e., when −pQ arg pQ p. Thus
the closed contour should be chosen in the form presented in Figure 1. Due to the Jordan
lemma, the curvilinear integrals taken along the arcs cR tend to zero at R:a. For weakly

Figure 2. The behaviour of the complex conjugate roots p1,2 =−a2 iv for a single-mass system based on
the fractional calculus model with the Rzhanitsyn after-effect kernel: (a) j=1/50; (b) j=1/9; (c) j=1/6.
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Figure 3. The distribution function B versus ln t for a single-mass system based on the fractional calculus
model with the Rzhanitsyn after-effect kernel at j=1/50.

singular kernels, the integral taken along cr also tends to zero when r:0. By using the
main theorem of the theory of residues, the solution of equations (11) and (12) thus may
be written as

x(t)=
1

2pi g
a

0

[x̄(s e−ip)−x̄(s eip)]H(s− s
*
) e−st ds+ s

k

res[x̄( pk ) epkt], (16)

where the summation is taken over all isolated singular points (poles).

4. HEREDITARY ELASTIC OSCILLATOR MODEL WITH THE RZHANITSYN
AFTER-EFFECT KERNEL

Applying the Laplace transformation to the formula (2) at i= s yields

K�s ( p)= (1+ pts )−g. (17)

Considering the expression (17) in relation (13), one finds that

x̄( p)=
F[(1+ pts )g + ns ]

( p2 +v2
a)(1+ pts )g + p2ns

. (18)

To obtain the poles of the function (18), one finds the roots of the characteristic equation

( p2 +v2
a)(1+ pts )g + p2ns =0. (19)

It can be demonstrated that equation (19) has no real negative roots. Setting p=−y,
yq 0 in equation (19) yields

y2 =−v2
a(1− yts )g/[(1− yts )g + ns ],

which is inconsistent with the input assumption.
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For finding the complex roots of equation (19), one substitutes p= r eic. Then,
separating the real and imaginary parts, one obtains the system of two equations

v2
ar−2 cos 2c+ nsR−g cos gF+1=0, (20a)

v2
ar−2 sin 2c+ nsR−g sin gF=0, (20b)

where R2 =1+2tsr cos c+ t2
sr2 and tg F= tsr sin c(1+ tsr cos c)−1.

From equation (20b), it will be obvious that the system is rootless at every 0 Q =c =Q p/2.
To calculate the roots of equations (20) at p/2Q =c =Q p, one multiplies equation (20a)
by sin 2c and equation (20b) by cos 2c, and substracts the second equation from the first
one. Introducing the new variable x= tsr and putting va =1 yields

sin 2c+ ns (1+2x cos c+ x2)−g/2 sin $2c− g arctg 0 x sin c

1+ x cos c1%=0. (21)

From equation (21), at every fixed angle p/2Q =c =Q p, and given ns and g, one can
determine the value x. Then substituting that value x into equation (20b), first one finds
that

r=(−Rg sin 2c/ns sin gf)1/2,

and thereafter one can calculate the value ts = xr−1.
The behaviour of the roots in the complex plane as functions of the parameter ts for

the three magnitudes ns =49, 8 and 5 (j=1/50, 1/9 and 1/6) at va =1 is presented in
Figures 2(a), (b) and (c), respectively, wherein the magnitudes of g are indicated
numerically. It is seen that the curves for the two complex conjugate roots p1,2 =−a+iv
at g$ 1 leave the points 2i and converge in the points 2ij1/2; in so doing they do not
meet the real negative semi-axes and remain inside the curves for the roots of the
characteristic equation with g=1 (the ordinary standard linear solid model). In other
words, at g$ 1 the behaviour of the roots of the characteristic equation for the fractional
calculus model is governed by the magnitudes of the value of j, which may be considered
as the deficiency of the elastic modulus.

The asymptotics for the characteristic equation (19) may be written as

p2+ g + p2nst
−g
s +v2

apg =0, ts w 1, (22a)

p3g+ p2t−1
s (1+ ns )+v2

apg+v2
0t

−1
s =0, ts W 1, (22b)

where v0 is the frequency of elastic vibrations corresponding to the relaxed magnitude of
the elastic modulus, from which it follows that the root behaviour is determined by the
fractional calculus standard linear solid model and the ordinary standard linear solid
model for large ts and small ts , respectively.

Knowing the behaviour of roots of the characteristic equation and considering
that the branch points are s

*
= t−1

s and −a, one can write the solution (16) in the
form

x(t)=A0(t)+A exp(−at) sin (vt−8), (23)

where

A=2F[(h2 + q2)−1(n2
s +2Rgns cos gF+R2g)]1/2, (24)
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tg 8=−[ns sin x+Rg sin (gc+ x)]/[ns cos x+Rg cos (gc+ x)], tg x= h/q,

h=2rRg cos (c+F)+ r2Rg−1gts cos [2c+(g−1)F]+ tsv
2
agRg−1 cos (g−1)F

+2rns cos c,

q=2rRg sin (c+F)+ r2Rg−1gts sin [2c+(g−1)F]+ tsv
2
agRg−1 sin (g−1)F

+2rns sin c. (25)

The function A0(t) decribing the drift of the equilibrium position of the single-mass
system may be represented in the form (4): i.e.,

A0(t)=g
a

0

t−1B(t, ts ) e−t/t dt. (26)

Here

B(t, ts )=
sin pg

p

Fv2
a(1+v2

at2)−1t3H(ts − t)
[Ds (t)]−1 +Ds (t)+2 cos pg

, (27)

Ds (t)= tg(1+v2
at2)−1(ts − t)−gns,

gives the distribution of the creep parameters (retardation parameters) of the dynamic
system. The character of this function versus ln t is shown in Figure 3 for ns =49 and

Figure 4. The values a and v as function of ln t for a single-mass system based on the fractional calculus model
with the Rzhanitsyn after-effect kernel at j=1/50.
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Figure 5. The amplitude A versus ln t for a single-mass based on the fractional calculus model with the
Rzhanitsyn after-effect kernel at j=1/50.

ts =1, from which it is seen that the fractional operator parameter g is some structural
parameter that characterizes ‘‘fuzzifying’’ of the creep spectrum. The function b at m$ 0,
similar to the function B at m=0, is not the d-like sequence at g:1.

In the quasi-static case, the distribution function for the relaxation and creep parameters
of the dynamic system transforms into the distribution function of the creep times (5) for
the rheological model with the Rzhanitsyn after-effect kernel.

Relationships (23)–(27) define the damped vibrations around the drifting equilibrium
position with the natural frequency v and the damping factor a. An aperiodic regime is
lacking for g$ 1.

Figure 6. The phase shift 8 versus ln t for a single-mass system based on the fractional calculus model with
the Rzhanitsyn after-effect kernel at j=1/50.
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Figure 7. The behaviour of the complex conjugate roots p1,2 =−a2 iv for a single-mass system based on
the fractional calculus model with the Rzhanitsyn relaxation kernel: (a) j=1/50; (b) j=1/9; (c) j=1/6; (d)
j=1/6.

One can trace the temperature dependence of the damping factor a and frequency v.
Since for the majority of relaxation processes ti = ti0 exp(U/RT), where i= o or s, U is
the activation energy, R is the characteristic gas constant, and T is the absolute
temperature, then the ln te or ln ts dependence of the physical values is equivalent to the
temperature dependence.

The characteristic behaviour of the values a and v as functions of ln ts is presented in
Figure 4 for j=1/50. Figures near the curves point to the magnitudes of the parameter
g. Reference to Figure 4 shows that at every magnitude g$ 1 as t varies from 0 to a,
the damping factor passes a maximum and the vibration frequency increases
monotonically only when gQ 0·85. With gq 0·85 as t increases, the vibration frequency
first decreases from j1/2 to some value and then increases up to 1 with further increase
in t.

The ln t dependences of the functions A and 8 are presented in Figures 5 and 6,
respectively. From Figure 5 it follows that the function A varies between j−1/2 to 1, either
decreasing monotonically (gQ 0·8) or, after passing a maximum, decreasing monotoni-
cally, (0·8E gQ 1). From Figure 6 it is seen that tg 8:−sin (gp/2)/[ns +cos (gp/2)] when
ts:0, but the phase shift 8:p(1− g)/2 when ts:a.

5. HEREDITARY ELASTIC OSCILLATOR MODEL WITH THE RZHANITSKYN
RELAXATION KERNEL

Consider now the Rzhanitsyn kernel (2) at i= o as the relaxation kernel in the
Boltzmann–Volterra relationships (1). Then formula (13) can be written in the form

x̄( p)=F(1+ pto )g/[( p2 +v2
a)(1+ pto )g −v2

ano ]. (28)

To define the poles of the function x̄( p), the roots of the characteristic equation

( p2 +v2
a)(1+ pto )g −v2

ano =0 (29)
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should be found. It may be shown that equation (29) possesses real roots. Putting p=−y,
yq 0 in equation (29), one finds the relation

y2 =v2
a[no −(1− yto )g ](1− yto )−g, (30)

which is fulfilled under the condition t−1
o (1− n1/g

o )E yQ t−1
o .

Setting p= r eic in equation (29) and separating real and imaginary parts yields

r2 cos 2c−v2
anoR−g cos gF+v2

a =0, r2 sin 2c−v2
anoR−g sin gF=0, (31a, b)

where R2 =1+2tor cos c+ t2
o r2, and tg F= tor sin c(1+ tor cos c)−1. From equation

(31b), it is seen that the system is rootless at any =c =Q p/2. To calculate the roots of the

Figure 8. The values a, b and v as functions of ln t for a single-mass system based on the fractional calculus
model with the Rzhanitsyn relaxation kernel at j=1/50.



1

ln τ

ln
 α

, l
n

 β

1

–3

–2 –1 0 2

0·98

4

3

–2

2

0

–1

0·8

0·5

–4 –3 3

(a)

(b)
1·0

0·5

0·0
1–2 –1 0–3

ω

0·98 0·8

0·5

0·98
0·8

0·5

0·8 0·5

. .   . . 578

Figure 9. The values a, b and v as functions of ln t for a single-mass system based on the fractional calculus
model with the Rzhanitsyn relaxation kernel at j=1/9. ——, b; - - - - -, a.

system (31) at p/2Q =c =Q p, one multiplies equations (31a) and (31b) by sin 2c and
cos 2c, respectively, and substracts the second equation from the first one. Introducing
the new variable x= tor and putting va =1, as a result one obtains

sin 2c− no (1+2x cos c+ x2)−g/2 sin $2c+ g arctg 0 x sin c

1+ x cos c1%=0. (32)

The value x is determined from equation (32) at every fixed angle p/2Q =c =Q p and given
no and g. Then, substituting the found value x into equation (31b), first one finds that

r=(−Rg sin 2c/no sin gF)−1/2,

and thereafter one can calculate the value to = xr−1.
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The behaviour of the roots in the complex plane as a function of the parameter to for
four magnitudes no =0·98, 14/15, 8/9 and 5/6 (j=1/50, 1/15, 1/9 and 1/6) at va =1 is
presented in Figures 7(a), (b), (c) and (d), respectively, wherein the magnitudes of g are
indicated numerically. Reference to Figure 7 shows that as to changes from 0 to a, the
curves for the two complex conjugate roots p1,2 =−a2 iv at any 0Q gQ 1 issue out of
the points 2ij1/2 and converge in the points 2i. At no =0·98 and 0·12E gQ 1 (Figure 7(a))
or no =14/15 and 0·47E gQ 1 (Figure 7(b)) a domain of aperiodicity is observed, which
narrows with decrease in g from 1 to 0·12 or from 1 to 0·47 and degenerates into a point
at g=0·12 or g=0·47. This domain disappears completely at 0 E gQ 0·12 or
0Q gQ 0·47, respectively. At no =8/9 (Figure 7(c)) and 5/6 (Figure 7(d)) the domain of
aperiodicity is entirely absent, although a domain of aperiodicity at no =8/9 and g=1
exists in the form of a point.

To calculate the real roots of equation (29), one can introduce the new variable x= yto

in (30). Then for every fixed (1− n1/g
o )Q xQ 1, from equation (30) one obtains y, and

thereafter knowing x and y one finds to = x/y.
In other words, the structural parameter g along with the parameter j influences not

only the dimensions of the periodicity domain, but the existence of this domain as well.
This circumstance profitably distinguishes the model under consideration from the
previous model, since it allows one to use this model for describing dissipative processes
of high intensity.

Figure 10. The distribution function B versus ln t for a single-mass system based on the fractional calculus
model with the Rzhanitsyn relaxation kernel at j=1/50. ——, to =1; - - - - -, to =0.5.
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T 1

The influence of the fractional operator parameter g and the parameter no on the behaviour
of the single-mass system with the Rzhanitsyn relaxation kernel (12) when i= o

no g to The type of solution for x(t)

0·98 0Q gQ 0·12 0E to Qa (33)

0Q to Q 1·955 (33)

0·12 1·955Q to Qa
to =1·955 (36)

0Q to Q 0·543 (33)
0·819Q to Qa

0·5 to =0·543 (60)
to =0·819

0·543Q to Q 0·891 (34)

0E to Q 0·355 (33)
0·599Q to Qa

0·8 to =0·355 (35)
to =0·599

0·355Q to Q 0.599 (34)

0E to Q 0·283 (33)
0·52Q to Qa

0·98 to =0·283 (35)
to =0·52

0·283Q to Q 0·52 (34)

8/9 or 5/6 0Q gQ 1 0E to Qa (33)

14/15 0Q gQ 0·47 0E to Qa (33)

0·47 0E to Q 0·962 (33)
0·962Q to Qa

to =0·962 (36)

0E to Q 0·881 (33)
0·885Q to Qa

0·5 to =0·881 (35)
to =0·885

0·881Q to Q 0·885 (34)

0E to Q 0·587 (33)
0·663Q to Qa

0·8 to =0·587 (35)
to =0·633

0·587Q to Q 0·633 (34)

The ln to dependence of the values ln a and ln b (b are the real roots of the characteristic
equations) are given in Figures 8 and 9 for no =0·98 and no =8/9, respectively. It is evident
that at no =0·98 and 0·12E gQ 1 (Figure 8(a)) the curves ln a, increasing monotonically,
approach the boundaries of the aperiodicity domain from the left and from the right, and
at the boundary points those curves continuously transform into the curve of real roots,
such that the curves ln a together with the segments of the curves ln b between two
boundary points generate continuous lines having a maximum on the right boundary of
the domain of aperiodicity (this maximum decreases with decrease in the parameter g). The
real root decreases from +a to −a when ln to changes from −a to +a, and in so
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doing its monotonic decrease to the left and to the right of the aperiodicity domain
boundaries alternate in a zigzag diminution, resulting in three values ln b at every
magnitude ln to inside the aperiodicity domain. When 0Q gQ 0·12, the curves ln a pass
a maximum, but the curves ln b decrease monotonically from +a to −a as ln to changes
from −a to +a, which results in one real root. The values ln a and ln b as functions
of ln to behave similarly at no =8/9 (Figure 9(a)) for every magnitude of the parameter
0Q gE 1.

The character of the value of v as a function of ln to is presented in Figures 8(b) and
9(b) for various magnitudes of the parameter g. It is seen that as ln to increases from −a
to a, almost all curves first decrease from j1/2 to 0 or to some finite value, but then increase
to 1 during further increase in ln to . Only for a small number of curves (they correspond
to small g) is a monotonic increase in v from j1/2 to 1 observed.

Knowing the behaviour of the characteristic equation roots and considering that the
branch points are s*=−t−1

o and −a, one can write the solution (23) as follows: for the
domains of vibration motions (one real and two complex conjugate roots)

x(t)=A0(t)+A1 exp(−a1t)+A2 exp(−a2t) sin (vt−8), (33a)

or (real root disappears)

x(t)=A0(t)+A2 exp(−a2t) sin (vt−8); (33b)

for the domain of aperiodic motions (three real different roots)

x(t)=A0(t)+ s
3

i=1

Hi exp(−bit); (34)

for the boundaries of the domain of aperiodic motions (one real root, for example, b1 is
the simple root, and the other real root b= b2 = b3 is one repeated root)

x(t)=A0(t)+H1 exp(−b1t)+B1 exp(−bt)+B2t exp(−bt), (35)

or (in the case that the domain of the aperiodic motions degenerates into a point, the real
root b*= b1 = b2 = b3 becomes a three-fold root)

x(t)=A0(t)+B*1 exp(−b*t)+B*2 t exp(−b*t)+B*3 t2 exp(−b*t), (36)

where a1, bi (i=1, 2, 3), b and b* are the real roots of equation (29) which are located
between t−1

o (1− n1/g
o ) and the branch point t−1

o , and a2 2 iv are the complex conjugate
roots of equation (29).

The amplitudes Ai , Hi , B*i (i=1, 2, 3), B1 and B2, as well as tg 8, are expressed
in terms of the damping coefficients a1, a2, bi , b, b* and the natural frequency v as
follows:

A1 =
F(1− a1to )

a2
1to (2+ g)−2a1 + gtov

2
a
, Hi =

F(1− bito )
b2

i to (2+ g)−2bi + gtov
2
a
,

A2 =2FRg(h2 + q2)−1/2, tg 8=−tg(gc+ x), tg x= h/q,

h=2rRg cos (c+ gF)+ gr2Rg−1to cos [2c+(g−1)F]+ gv2
aRg−1to cos (g−1)F,

q=2rRg sin (c+ gF)+ gr2Rg−1to sin [2c+(g−1)F]+ gv2
aRg−1to sin (g−1)F,

B1 =2Fg(1− bto )tol−1, B2 =2F(1− bto )2l−1,

l= b2t2
o (2+ g)(1+ g)−4bto(1+ g)+ g(g−1)t2

o v
2
a,
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B*1 =3Fg(g−1)(1− bto )t2
o l−1

1 , B*2 =6Fg(g− bto )2tol−1
1 , B*3 =3F(1− bto )3l−1

1 ,

l1 = b2t3
o (2+ g)(1+ g)g−6bt2

o (1+ g)g+4to (1+ g)+ g(g−1)(g−2)t2
o v

2
a.

The influences of the fractional operator parameter g and the parameter no upon the
behaviour of the single-mass system are illustrated in Table 1.

The value A0(t) is determined by formula (26), wherein the distribution function B(t, to )
of the relaxation and creep parameters of the dynamical system has the form

B(t, to )=
sin pg

p

F(1+v2
at2)−1t3H(to − t)

[Do (t)]−1 +Do (t)t4 +2t2 cos pg
, (37)

Do (t)= tg(1+v2
at2)−1(to − t)−gv2

ano .

In the quasi-static case the distribution function (37) transforms into the distribution
function (6).

The t-dependence of the distribution function B is presented in Figure 10 at no =0·98
and to =1. Note that the function B at m$ 0, similar to the analogous function B at m=0
(see the Appendix), is the d-like sequence at g:1.

To evaluate the contribution of each term in the expressions (33) and (34), the ln to

dependences of the amplitudes A1 and A2 at no =8/9 and the amplitudes H1, H2, H3, A1

Figure 11. The amplitudes A1 and A2 versus ln t for a single-mass system based on the fractional calculus model
with the Rzhanitsyn relaxation kernel at j=1/9. - - -, A1; ——, A2.
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Figure 12. The amplitudes A1, A2, Hi versus ln t for a single-mass system based on the fractional calculus model
with the Rzhanitsyn relaxation kernel at j=1/50.

and A2 at no =0·98 are given in Figures 11 and 12. The value g is the fractional
operator parameter, the values of which are indicated by figures near curves.
From Figure 11 it is seen that A1 and A2 pass a maximum which shifts to greater to

with a decrease in the parameter g. Reference to Figure 12 shows that as ln to

varies from −a to the magnitude which determines the left boundary of the
periodicity domain, and from the magnitude which governs its right boundary to +a,
the amplitude A2 passes a maximum tending to zero at ln to:2a and vanishing on
the boundaries of the aperiodicity domain. As this takes place, the amplitude
A1 approaches zero at ln to:2a, but on the left and right boundaries of the
aperiodicity region it goes uninterruptedly into the amplitudes H3 and H1,
respectively. Within the aperiodicity domain, the amplitudes H3 and H1 asymptotically
approach the right and left boundaries, respectively. The amplitude H2 residing within the
aperiodicity domain asymptotically approaches its right and left boundaries.

The ln to dependence of the phase shift 8 is shown in Figure 13 for no =0·98. When to:0,
the value 8:(p− gp/2), but when to:a, the function 8:0. From Figure 13 it is seen
that when passing through the aperiodicity domain the phase shift varies over p/2 without
regard to the value of the fractional operator parameter g.

Thus, the weakly singular Rzhanitsyn function chosen as the relaxation kernel makes
it possible to account for the influence of the fractional operator parameter, which governs
‘‘fuzzifying’’ of the relaxation spectrum, on the dynamic characteristics of the single-mass
system not only within the domain of vibration, but within the domain of aperiodic
motions as well.
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Figure 13. The phase shift 8 versus ln t for a single-mass system based on the fractional calculus model with
the Rzhanitsyn relaxation kernel.

6. CONCLUSIONS

Comparison studies of damped vibrations of the hereditarily elastic oscillators, the
hereditary properties of which are described by the fractional calculus models with the
weakly singular Rzhanitsyn kernel, allow one to make the following conclusions.

1. The oscillators with fractional operators constitute a continuum of ordinary
viscoelastic elements distributed uninterruptedly over the relaxation or creep times in terms
of some functions (distribution functions), as distinct from the oscillators with ordinary
operators at g=1, which involve either one viscoelastic element or a finite number of
ordinary viscoelastic elements distributed discretely over the relaxation or creep times. This
enables the fractional calculus models to be used for analyzing and calculating damping
systems which are founded on the harnessing of damping backing, coating and isolators
of various dimensions and shapes.

2. The parameter g plays the role of some structural parameter, the modification of
which implies ‘‘fuzzifying’’ of the relaxation or creep times spectrum and equalizing of the
spectral density along the entire time axis.

3. It is known that, under a sufficiently large intensity of dissipative processes, real
vibrating systems may experience an aperiodic regime. The peculiarity of the vibrational
process of viscoelastic single-mass systems, which are modelled by fractional calculus
models with the weakly singular Rzhanitsyn kernel as the creep kernel, resides in the
impossibility of the transition from the vibrating motions to the aperiodic regime.

4. The more complicated rheological model (the model with the weakly singular
Rzhanitsyn kernel as the relaxation kernel) is suggested for describing the viscoelastic
properties of a single-mass system, which allows one to trace the influence of the fractional
operator parameter g on the dynamic characterisitcs of the system, not only in the region
of vibration, but in the domain of the aperiodic motions as well. Moreover, it has been
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shown that the occurrence or vanishing of the region of the aperiodic motions for the
model put forward is governed not only by the magnitudes of no , but by the magnitudes
of g as well.

5. An efficient method for solving the characteristic equations for the generalized
fractional calculus viscoelastic models, i.e., algebraic equations with fractional powers, is
suggested for use at any magnitudes of the fractional operator parameter g.

6. In a manner similar to that for quasi-static cases, when investigating the vibrations
of single-mass systems based on the generalized fractional calculus viscoelastic rheological
models, in every specific case it has been possible to construct the distribution function
for the relaxation or creep parameters of the dynamic system, which involves the system
mass m in addition to the rheological parameters. This function defines the drift of the
equilibrium position for the vibrating system. When m:0 (quasi-static case), the dynamic
distribution function transforms to the distribution function of the corresponding
rheological model.
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APPENDIX

When g:1, the functions sin pg and cos pg may be approximated by the expression

sin pg0 p(1− g), cos pg0−1+1/2p2(1− g)2, (A1)

respectively. With due account taken of expressions (A1), the distribution function (6) may
be approximated by the expression

Bo (t, to )0
(Tns )1/2H(ts − t)

pt

(Tns )1/2p(1− g)
(T− ns )2 +Tnsp

2(1− g)2, (A2)

where T= ts /t−1. Noting that

(Tns )1/2p(1− g)
(T− ns )2 +Tnsp

2(1− g)2 =−Im
1

T− ns +i(Tns )1/2p(1− g)
,

and considering the Sokhotsky formula [18]

lim
g:1

1
T− ns +i(Tns )1/2p(1− g)

=
1

T− ns

−ipd(T− ns ) (A3)

yields

lim
g:1

Bo (t, to )=H(ts − t)
(Tns )1/2

tno

d(T− ns )=H(ts − t)
(Tns )1/2

tsno

d(to − t): (A4)

i.e., in the limiting case the distribution is described by the d-function with the evident
fulfillment of the normalizing condition, since at T= ns or t= to one obtains that
H(ts − to )=1, and nsn

−1
o tot

−1
s =1.


